Uncovering the therapeutic potential of green pea waste in breast cancer: a multi-target approach utilizing LC-MS/MS metabolomics, molecular networking, and network pharmacology.

阅读:3
作者:Khalil Asmaa M, Sabry Omar M, El-Askary Hesham I, El Zalabani Soheir M, Eltanany Basma M, Pont Laura, Benavente Fernando, Mohamed Ahmed F, Fayek Nesrin M
BACKGROUND PISUM SATIVUM: (PS) is a universal legume plant utilized for both human and animal consumption, particularly its seeds, known as green peas. The processing of PS in food industries and households produces a significant amount of waste that needs to be valorized. METHODS: In this study, the metabolite profiles of the 70% ethanolic extracts of PS wastes, namely peels (PSP) and a combination of leaves and stems (PSLS), were investigated by liquid chromatography-electrospray ionization-quadrupole time-of-flight tandem mass spectrometry (LC-ESI-QTOF-MS/MS) followed by molecular networking. RESULTS: Different classes of metabolites were identified, being flavonoids and their derivatives, along with phenolic acids, the most abundant categories. Additionally, a comprehensive network pharmacology strategy was applied to elucidate potentially active metabolites, key targets, and the pathways involved in cytotoxic activity against breast cancer. This cytotoxic activity was investigated in MCF-7 and MCF-10a cell lines. Results revealed that PSLS extract exhibited a potent cytotoxic activity with a good selectivity index (IC(50 =) 17.67 and selectivity index of 3.51), compared to the reference drug doxorubicin (IC(50 =) 2.69 µg/mL and selectivity index of 5.28). Whereas PSP extract appeared to be less potent and selective (IC(50 =) 32.92 µg/mL and selectivity index of 1.62). A similar performance was also observed for several polyphenolics isolated from the PSLS extract, including methyl cis p-coumarate, trans p-coumaric acid, and liquiritigenin/ 7-methyl liquiritigenin mixture. Methyl cis p-coumarate showed the most potent cytotoxic activity against MCF-7 cell line and the highest selectivity (IC(50 =) 1.18 µg/mL (6.91 µM) and selectivity index of 27.42). The network pharmacology study revealed that the isolated compounds could interact with several breast cancer-associated protein targets including carbonic anhydrases 1, 2, 4, 9, and 12, as well as aldo-keto reductase family 1 member B1, adenosine A3 receptor, protein tyrosine phosphatase non-receptor type 1, and estrogen receptor 2. CONCLUSION: The uncovered therapeutic potential of PSLS and its metabolite constituents pave the way for an efficient and mindful PS waste valorization, calling for further in-vitro and in-vivo research.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。