Lipopolysaccharide is a frequent and significant contaminant in microglia-activating factors

脂多糖是小胶质细胞活化因子中常见且重要的污染物

阅读:2
作者:Jonathan R Weinstein, Sarah Swarts, Caroline Bishop, Uwe-Karsten Hanisch, Thomas Möller

Abstract

Lipopolysaccharide (LPS/endotoxin) is a potent immunologic stimulant. Many commercial-grade reagents used in research are not screened for LPS contamination. LPS induces a wide spectrum of proinflammatory responses in microglia, the immune cells of the brain. Recent studies have demonstrated that a broad range of endogenous factors including plasma-derived proteins and bioactive phospholipids can also activate microglia. However, few of these studies have reported either the LPS levels found in the preparations used or the effect of LPS inhibitors such as polymyxin B (PMX) on factor-induced responses. Here, we used the Limulus amoebocyte lysate assay to screen a broad range of commercial- and pharmaceutical-grade proteins, peptides, lipids, and inhibitors commonly used in microglia research for contamination with LPS. We then characterized the ability of PMX to alter a representative set of factor-induced microglial activation parameters including surface antigen expression, metabolic activity/proliferation, and NO/cytokine/chemokine release in both the N9 microglial cell line and primary microglia. Significant levels of LPS contamination were detected in a number of commercial-grade plasma/serum- and nonplasma/serum-derived proteins, phospholipids, and synthetic peptide preparations, but not in pharmaceutical-grade recombinant proteins or pharmacological inhibitors. PMX had a significant inhibitory effect on the microglia-activating potential of a number of commercial-, but not pharmaceutical-grade, protein preparations. Novel PMX-resistant responses to alpha(2)-macroglobulin and albumin were incidentally observed. Our results indicate that LPS is a frequent and significant contaminant in commercial-grade preparations of previously reported microglia-activating factors. Careful attention to LPS levels and appropriate controls are necessary for future studies in the neuroinflammation field.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。