Pyrotinib induces cell death in HER2-positive breast cancer via triggering HSP90-dependent HER2 degradation and ROS/HSF-1-dependent oxidative DNA damage

吡咯替尼通过触发 HSP90 依赖的 HER2 降解和 ROS/HSF-1 依赖的氧化性 DNA 损伤诱导 HER2 阳性乳腺癌细胞死亡

阅读:9
作者:Xiaomin Gao, Xu Guo, Wenbo Yuan, Sunmin Jiang, Zihong Lu, Qing Luo, Yuan Zha, Ling Wang, Shu Li, Ke Wang, Xue Zhu, Ying Yao

Abstract

HER2-positive breast cancer (HER2+ BC) is distinguished by its poor prognosis, propensity for early onset, and high risk of recurrence and metastasis. Consequently, anti-HER2-targeted therapy has emerged as a principal strategy in the treatment of this form of breast cancer. Pyrotinib, a novel irreversible pan-HER2 tyrosine kinase inhibitor, has brought fresh hope to patients with advanced HER2+ breast cancer. In this study, we conducted a comprehensive exploration of pyrotinib's antitumor mechanism. The in vitro results showed that pyrotinib significantly inhibited SKBR3 cells viability and induced apoptosis by promoting HER2 endocytosis and ubiquitylation, leading to HER2 degradation through the displacement of HSP90 from HER2. Beyond targeting the HER2 signaling pathway, pyrotinib also induced DNA damage, which was mediated by the activation of the reactive oxygen species/heat shock factor 1 signaling pathway and the downregulation of proliferating cell nuclear antigen expression. Furthermore, the in vivo results demonstrated a pronounced anticancer effect of pyrotinib in the SKBR3 xenograft mouse model, concomitant with a reduction in HER2 expression. In summary, our findings provide novel insights into the mechanism of pyrotinib in the treatment of HER2+ BC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。