The Antiviral Effects of Heat-Killed Lactococcus lactis Strain Plasma Against Dengue, Chikungunya, and Zika Viruses in Humans by Upregulating the IFN-α Signaling Pathway

热灭活乳酸乳球菌菌株血浆通过上调 IFN-α 信号通路对人类登革热、基孔肯雅病和寨卡病毒产生抗病毒作用

阅读:10
作者:Zhao Xuan Low, Osamu Kanauchi, Vunjia Tiong, Norhidayu Sahimin, Rafidah Lani, Ryohei Tsuji, Sazaly AbuBakar, Pouya Hassandarvish

Abstract

The growing risk of contracting viral infections due to high-density populations and ecological disruptions, such as climate change and increased population mobility, has highlighted the necessity for effective antiviral treatment and preventive measures against Dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus (ZIKV). Recently, there has been increasing attention on the use of probiotics as a potential antiviral option to reduce virus infections. The present study aimed to assess the immunomodulatory effects of heat-killed Lactococcus lactis strain plasma (LC-Plasma) on peripheral blood mononuclear cells (PBMCs) and its subsequent antiviral response against DENV, CHIKV, and ZIKV. To evaluate the immunomodulatory effects of LC-Plasma on PBMCs isolated from healthy individuals, PBMCs were cultured at a density of 2 × 105 cells/well and stimulated with 10 µg/mL of LC-Plasma. LC-plasma-stimulated PBMCs demonstrated elevated interferon-alpha (IFN-α) production and cluster of differentiation 86 (CD86) and human leukocyte antigen-DR isotype (HLA-DR) upregulation, potentially linked to plasmacytoid dendritic cell (pDC) activation. The replication of DENV, CHIKV, and ZIKV was dose-dependently inhibited when Huh-7 cells were stimulated with LC-Plasma-stimulated PBMC supernatant (LCP Sup). IFN-stimulated gene (ISG) expression, including IFN-stimulated gene 15 (ISG15), IFN-stimulated exonuclease gene 20 (ISG20), IFN-induced transmembrane protein 1 (IFITM-1), myxovirus resistance protein A (MxA), and radical S-adenosyl methionine domain-containing protein 2 (RSAD2), was significantly upregulated in LCP Sup-stimulated Huh-7 cells. Findings from this study indicate that LC-Plasma has the potential to induce IFN-α production, leading to an enhancement in the expression of ISGs and contributing to a broad-spectrum antiviral response. Thus, LC-Plasma may serve as a rational adjunctive treatment to ameliorate viral diseases, warranting future clinical trials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。