Transcriptomic and de novo proteomic analyses of organotypic entorhino-hippocampal tissue cultures reveal changes in metabolic and signaling regulators in TTX-induced synaptic plasticity

对类器官型内嗅-海马组织培养物的转录组学和从头蛋白质组学分析揭示了TTX诱导的突触可塑性中代谢和信号调节因子的变化

阅读:1
作者:Maximilian Lenz ,Paul Turko ,Pia Kruse ,Amelie Eichler ,Zhuo Angel Chen ,Juri Rappsilber ,Imre Vida ,Andreas Vlachos

Abstract

Understanding the mechanisms of synaptic plasticity is crucial for elucidating how the brain adapts to internal and external stimuli. A key objective of plasticity is maintaining physiological activity states during perturbations by adjusting synaptic transmission through negative feedback mechanisms. However, identifying and characterizing novel molecular targets orchestrating synaptic plasticity remains a significant challenge. This study investigated the effects of tetrodotoxin (TTX)-induced synaptic plasticity within organotypic entorhino-hippocampal tissue cultures, offering insights into the functional, transcriptomic, and proteomic changes associated with network inhibition via voltage-gated sodium channel blockade. Our experiments demonstrate that TTX treatment induces substantial functional plasticity of excitatory synapses, as evidenced by increased miniature excitatory postsynaptic current (mEPSC) amplitudes and frequencies in both dentate granule cells and CA1 pyramidal neurons. Correlating transcriptomic and proteomic data, we identified novel targets for future research into homeostatic plasticity, including cytoglobin, SLIT-ROBO Rho GTPase Activating Protein 3, Transferrin receptor, and 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1. These data provide a valuable resource for future studies aiming to understand the orchestration of homeostatic plasticity by metabolic pathways in distinct cell types of the central nervous system. Keywords: homeostatic synaptic plasticity; organotypic tissue culture; proteomics; transcriptome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。