Targeting Caveolin-1 for enhanced rotator cuff repair: findings from single-cell RNA sequencing

以 Caveolin-1 为靶点增强肩袖修复:单细胞 RNA 测序结果

阅读:2
作者:Shanhong Fang, Songye Wu, Peng Chen

Abstract

Rotator cuff injury (RCI), a prevalent cause of shoulder pain and disability, often leads to significant functional impairments due to adipocyte infiltration into the damaged tissue. Caveolin-1 (Cav-1), a critical membrane protein, plays a significant role in adipocyte differentiation and lipid metabolism. This study utilized single-cell RNA sequencing (scRNA-seq) to investigate the heterogeneity of cell subpopulations in RCI tissues and assess the regulatory effects of Cav-1. The findings revealed that Cav-1 expression negatively correlates with adipogenic activity, and its modulation through exercise or targeted therapies can significantly reduce adipocyte infiltration and enhance tissue repair. Further, Cav-1 knockout and overexpression models demonstrated the protein's impact on key genes involved in adipocyte differentiation and lipid metabolism, such as Scd1, fatty acid synthase (FASN), and peroxisome proliferator-activated receptor gamma (Pparg). Animal studies corroborated these results, showing that exercise intervention increased Cav-1 expression, decreased adipocyte infiltration, and promoted structural repair. These insights suggest that targeting Cav-1 could offer a novel therapeutic strategy for improving RCI outcomes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。