SPICE1 promotes osteosarcoma growth by enhancing the deubiquitination of FASN mediated by USP10

SPICE1 通过增强 USP10 介导的 FASN 去泛素化促进骨肉瘤生长

阅读:2
作者:Weilai Tong #, Xinsheng Xie #, Zhiguo Shu #, Jiangbo Nie, Xianhe Yang, Feng Yang, Zhili Liu, Jiaming Liu

Background

Osteosarcoma (OS) is recognized as a prevalent primary bone malignancy, particularly affecting adolescents during their growth spurts. Despite its clinical significance, the underlying biological characteristics and associated prognostic factors remain incompletely understood. The identification of novel molecular players involved in osteosarcoma progression could enhance our understanding of its pathogenesis and potentially inform patient management strategies.

Conclusion

This study elucidates the role of SPICE1 as a potential oncogene in OS, highlighting its contribution to tumor growth through the modulation of FASN stability. Importantly, our results suggest that targeting the SPICE1/USP10/FASN signaling axis could offer a novel therapeutic approach for treating OS. Future investigations should focus on the development of specific inhibitors that disrupt this pathway, ultimately leading to improved clinical outcomes for patients with OS.

Methods

In this study, we investigated the expression levels of Spindle and Centriole-Associated Protein 1 (SPICE1) in OS cells and tissues through quantitative analyses. We performed in vitro and in vivo experiments to evaluate the proliferation effects of SPICE1 on OS cells. Additionally, we explored the mechanistic interactions between SPICE1, Fatty Acid Synthase (FASN), and ubiquitin-specific peptidase 10 (USP10) through co-immunoprecipitation and mutation analyses, including the design of a peptide to inhibit the SPICE1-FASN interaction.

Results

Our findings revealed that SPICE1 is significantly overexpressed in OS samples. Furthermore, this high expression correlates with poor patient prognosis. The elevated levels of SPICE1 were found to promote OS cell proliferation by inhibiting the ubiquitination of FASN, consequently enhancing FASN protein stability. Additionally, SPICE1 was shown to facilitate the interaction between USP10 and FASN, promoting FASN deubiquitination, with specific amino acid interactions identified between USP10 and FASN that are necessary for this process.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。