BACKGROUND: Neurological disorders are the second leading cause of death and the leading cause of disability in the world. Thus, the development of novel disease-modifying strategies is clearly warranted. We have previously developed a therapeutic approach using mouse targeted rabies virus glycoprotein (RVG) extracellular vesicles (EVs) to deliver minicircles (MCs) expressing shRNA (shRNA-MCs) to induce long-term α-synuclein down-regulation. Although the previous therapy successfully reduced the pathology, the clinical translation was extremely unlikely since they were mouse extracellular vesicles. METHODS: To overcome this limitation, we developed a source of human RVG-EVs compatible with a personalized therapy using immature dendritic cells. Human peripheral blood monocytes were differentiated in vitro into immature dendritic cells, which were transfected to express the RVG peptide. RVG-EVs containing shRNA-MCs, loaded by electroporation, were injected intravenously in the α-synuclein performed fibril (PFF) mouse model. Level of α-synuclein, phosphorylated α-synuclein aggregates, dopaminergic neurons and motor function were evaluated 90 days after the treatment. To confirm that EVs derived from patients were suitable as a vehicle, proteomic analysis of EVs derived from control, initial and advanced Parkinson's disease was performed. RESULTS: The shRNA-MCs could be successfully loaded into human RVG-EVs and downregulate α-synuclein in SH-SY5Y cells. Intravenous injection of the shRNA-MC-loaded RVG-EVs induced long-term downregulation of α-synuclein mRNA expression and protein level, decreased α-synuclein aggregates, prevented dopaminergic cell death and ameliorated motor impairment in the α-synuclein PFF mouse model. Moreover, we confirmed that the EVs from PD patients are suitable as a personalized therapeutic vehicle. CONCLUSION: Our study confirmed the therapeutic potential of shRNA-MCs delivered by human RVG-EVs for long-term treatment of neurodegenerative diseases. These results pave the way for clinical use of this approach.
Development of human targeted extracellular vesicles loaded with shRNA minicircles to prevent parkinsonian pathology.
开发载有 shRNA 微环的人类靶向细胞外囊泡,以预防帕金森氏症病理
阅读:32
作者:Izco Maria, Sola Carlos, Schleef Martin, Schmeer Marco, de Toro MarÃa, Verona Guglielmo, Carlos Estefania, Reinares-Sebastian Alejandro, Colina Sandra, Marzo-Sola Maria Eugenia, Garcia-Sanmartin Josune, Fernández-Irigoyen JoaquÃn, SantamarÃa Enrique, Mugica-Vidal Rodolfo, Blesa Javier, Alvarez-Erviti Lydia
| 期刊: | Translational Neurodegeneration | 影响因子: | 15.200 |
| 时间: | 2025 | 起止号: | 2025 May 26;14(1):26 |
| doi: | 10.1186/s40035-025-00484-7 | 种属: | Human |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
