BACKGROUND: Gestational lead exposure (GLE) produces novel and persistent rod-mediated electroretinographic (ERG) supernormality in children and adult animals. OBJECTIVES: We used our murine GLE model to test the hypothesis that GLE increases the number of neurons in the rod signaling pathway and to determine the cellular mechanisms underlying the phenotype. RESULTS: Blood lead concentrations ([BPb]) in controls and after low-, moderate-, and high-dose GLE were ⤠1, ⤠10, approximately 25, and approximately 40 µg/dL, respectively, at the end of exposure [postnatal day 10 (PND10)]; by PND30 all [BPb] measures were ⤠1 µg/dL. Epifluorescent, light, and confocal microscopy studies and Western blots demonstrated that late-born rod photoreceptors and rod and cone bipolar cells (BCs), but not Müller glial cells, increased in a nonmonotonic manner by 16-30% in PND60 GLE offspring. Retinal lamination and the rod:cone BC ratio were not altered. In vivo BrdU (5-bromo-2-deoxyuridine) pulse-labeling and Ki67 labeling of isolated cells from developing mice showed that GLE increased and prolonged retinal progenitor cell proliferation. TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) and confocal studies revealed that GLE did not alter developmental apoptosis or produce retinal injury. BrdU birth-dating and confocal studies confirmed the selective rod and BC increases and showed that the patterns of neurogenesis and gliogenesis were unaltered by GLE. CONCLUSIONS: Our findings suggest two spatiotemporal components mediated by dysregulation of different extrinsic/intrinsic factors: increased and prolonged cell proliferation and increased neuronal (but not glial) cell fate. These findings have relevance for neurotoxicology, pediatrics, public health, risk assessment, and retinal cell biology because they occurred at clinically relevant [BPb] and correspond with the ERG phenotype.
Low-level gestational lead exposure increases retinal progenitor cell proliferation and rod photoreceptor and bipolar cell neurogenesis in mice.
低水平妊娠期铅暴露可增加小鼠视网膜祖细胞增殖以及视杆感光细胞和双极细胞的神经发生
阅读:7
作者:Giddabasappa Anand, Hamilton W Ryan, Chaney Shawntay, Xiao Weimin, Johnson Jerry E, Mukherjee Shradha, Fox Donald A
| 期刊: | Environmental Health Perspectives | 影响因子: | 9.800 |
| 时间: | 2011 | 起止号: | 2011 Jan;119(1):71-7 |
| doi: | 10.1289/ehp.1002524 | 研究方向: | 神经科学、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
