Injectable hydrogel implants represent a promising therapeutic approach for ischemic heart failure; but their efficacy is often limited by low bioactivity, poor durability, and inadequate injection techniques. Herein, a unique hydrogel incorporating extracellular matrix from fish swim bladder (FSB-ECM), which has distinct advantages over mammalian derived ECM, such as low antigenicity, bioactivity, and source safety, is developed. It consists of collagen, glycoproteins, and proteoglycans, including 13 proteins common in the myocardial matrix and three specific proteins: HSPG, Col12a1, and vWF. This hydrogel enhances cardiac cell adhesion and stretching while promoting angiogenesis and M2 macrophage polarization. In addition, its storage modulus (G') increases over time, reaching about 1000Â Pa after 5 min, which facilitates transcatheter delivery and in situ gelling. Furthermore, this hydrogel provides sustained support for cardiac contractions, exhibiting superior longevity. In a rat model of ischemic heart failure, the ejection fraction significantly improves with FSB-ECM treatment, accompanied by increased angiogenesis, reduced inflammation, and decreased infarct size. Finally, RNA sequencing combined with in vitro assays identifies ANGPTL4 as a key protein involved in mediating the effects of FSB-ECM treatment. Overall, this new injectable hydrogel based on FSB-ECM is suitable for transcatheter delivery and possesses remarkable reparative capabilities for treating heart failure.
Fish Swim Bladder-Derived ECM Hydrogels Effectively Treat Myocardial Ischemic Injury through Immunomodulation and Angiogenesis.
阅读:2
作者:Fu Yulong, Gao Canran, Zhang Hailing, Liu Jing, Li Boxuan, Chen Wei, Chen Xiuping, Lin Xue, Fang Ligang, Wang Zhihong
期刊: | Advanced Science | 影响因子: | 14.100 |
时间: | 2025 | 起止号: | 2025 Jun;12(23):e2500036 |
doi: | 10.1002/advs.202500036 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。