Signal transduction is a fundamental process that enables cells to adapt to external cues and organize adequate responses including survival, death, growth, and homeostasis. A key mechanism modulating signal transduction relies on the formation of multimolecular complexes optimized for specificity, modularity and signal amplification. The scavenger receptor CD36, which binds diverse ligands in different cellular contexts, illustrates this principle. To uncover the nature of CD36 multimolecular complexes, we employed a proximity biotinylation labeling approach on human endothelial cells, where CD36 binds to thrombospondin-1 (TSP-1) to initiate a signaling cascade promoting programmed cell death. Using biotin capture and mass spectrometry protein identification, we uncovered a list of proteins in the vicinity of CD36. This list of candidates was refined by proximity ligation assays. The relationship between key CD36 interacting molecules, in particular active integrin beta-1 (ITGB1) and CD9, was further decoded by conditional colocalization analysis, providing support for their association within a tri-molecular complex. The implication of selected candidates in the signaling function of CD36 was further evaluated using shRNA knockdown, revealing that active ITGB1 is essential for Fyn activation downstream of CD36, with the tetraspanin playing a connecting role between CD36 and active ITGB1. Our approach to investigating CD36 complexes emphasizes the complexity and fundamental role of protein-protein interactions and coordination in the context of transmembrane signal transduction.
Investigation of CD36 interactome provides insights into multimolecular complexes necessary for anti-angiogenic signalling.
对 CD36 相互作用组的研究为了解抗血管生成信号传导所需的多分子复合物提供了见解
阅读:15
作者:Saini Arashdeep, Cardona Erik Gomez, Huang Han, Khaing Swai Mon, Klein Katie, Jaqaman Khuloud, Julien Olivier, Touret Nicolas
| 期刊: | bioRxiv | 影响因子: | |
| 时间: | 2025 | 起止号: | 2025 Jul 16 |
| doi: | 10.1101/2025.07.15.664851 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
