A UFD1 variant encoding a microprotein modulates UFD1f and IPMK ubiquitination to play pivotal roles in anti-stress responses

UFD1 变体编码一种微蛋白,该变体调节 UFD1f 和 IPMK 的泛素化,从而在抗应激反应中发挥关键作用。

阅读:1
作者:Xiuzhi Li # ,Xiaolin Wang # ,Xu Liu ,Ge Shan ,Liang Chen
Eukaryotic cells make multiple efforts to cope with internal and external stresses; such mechanisms include metabolic responses and the generation of stress-responsive mRNA isoforms (SR-mRNAisos), such as the classical XBP1s. Here, we identified a mammalian conserved SR-mRNAiso, UFD1s, which encodes a microprotein with anti-stress functions. UFD1s decreased the K63-linked ubiquitination levels of UFD1 full-length protein (UFD1f) via competitive binding to the E3 ubiquitin ligase MARCH7, and therefore regulated the dynamics of protein ubiquitination. Inositol polyphosphate multikinase (IPMK) was identified as the most significantly UFD1s-regulated target in terms of changes in K48- and K11-ubiquitination. UFD1s promoted autophagy and fatty acid oxidation, and IPMK was consistently destabilized. Ufd1s-deficient male mice exhibited metabolic disorders and accelerated NASH progression. Plasmid or circRNA expressing UFD1s alleviated NASH in mice, indicating that UFD1s has therapeutic value. Our findings revealed a mammalian conserved microprotein that plays crucial roles in anti-stress regulation through the modulation of ubiquitination and metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。