Generation and characterization of a DYNLT1-knockout mouse model reveals electrophysiological alterations and potential mechanistic contributors to atrial fibrillation.

阅读:2
作者:Chen Ting, Wang Ziyan, You Xinpeng, Guo Wenxing, Chua Yijin, Jiang Qi, Gao Yanhong
Atrial fibrillation (AF) is a common arrhythmia that increases the risk of stroke and heart failure and is associated with high morbidity and mortality. However, its molecular pathogenesis remains incompletely understood. In this study, we generated a DYNLT1 knockout (KO) mouse model using CRISPR/Cas9 technology. Through electrocardiography, echocardiography, and histological analysis, we found that DYNLT1 deletion induced spontaneous AF. The KO mice exhibited not only surface electrophysiological remodeling and atrial structural changes but also increased atrial cardiomyocyte apoptosis, downregulation of gap junction proteins, and elevated inflammatory markers at the molecular level. Furthermore, using mass spectrometry, immunofluorescence, and other molecular techniques, we observed that DYNLT1 deletion reduced the distribution of its interacting protein TMCO1 in the endoplasmic reticulum (ER) of atrial cardiomyocytes, leading to ER calcium overload and potentially triggering the onset of AF. This study establishes a novel animal model for AF research, advances our understanding of the molecular mechanisms underlying AF, and provides a theoretical basis for the development of targeted molecular therapies.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。