Deficiency of fibroblast growth factor 2 promotes contractile phenotype of pericytes in ascending thoracic aortic aneurysm.

成纤维细胞生长因子 2 缺乏会促进升主动脉瘤周细胞的收缩表型

阅读:10
作者:Huang Weijian, Hill Jennifer C, Patel Sakshi, Richards Tara D, Sultan Ibrahim, Kaczorowski David J, Phillippi Julie A
Pericytes exhibit progenitor cell-like qualities and associate with the vasa vasorum-vital microvessels nourishing larger arteries and veins. How pericytes change in human ascending thoracic aortic aneurysm (ATAA) remains unknown. Here, we used the public single-nuclei sequencing data to reveal a contractile phenotype transition of pericytes in human ATAA specimens. In addition, we found that a protective factor, fibroblast growth factor 2 (FGF2), is decreased in the aortic adventitia of both male and female patients with ATAA and impacts pericytes. We demonstrated that FGF2 maintained pericytes in a less contractile and high angiogenic phenotype via MAPK and PI3K-AKT signaling pathways. These findings suggested the latent engagement of pericytes in ATAA, providing insights that could guide the development of new therapies against aortic disease.NEW & NOTEWORTHY Here, we revealed that pericytes transition into a contractile phenotype in human ATAA. We demonstrated that FGF2 maintained pericytes in a less contractile and high angiogenic stage via MAPK and PI3K-AKT signaling pathway, whereas we found FGF2 is decreased in the aortic adventitia of patients with ATAA. Our findings suggest how growth factor deficiency in the microenvironment affects pericytes during ATAA, offering leads for potential new therapies for aortic diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。