Pericytes exhibit progenitor cell-like qualities and associate with the vasa vasorum-vital microvessels nourishing larger arteries and veins. How pericytes change in human ascending thoracic aortic aneurysm (ATAA) remains unknown. Here, we used the public single-nuclei sequencing data to reveal a contractile phenotype transition of pericytes in human ATAA specimens. In addition, we found that a protective factor, fibroblast growth factor 2 (FGF2), is decreased in the aortic adventitia of both male and female patients with ATAA and impacts pericytes. We demonstrated that FGF2 maintained pericytes in a less contractile and high angiogenic phenotype via MAPK and PI3K-AKT signaling pathways. These findings suggested the latent engagement of pericytes in ATAA, providing insights that could guide the development of new therapies against aortic disease.NEW & NOTEWORTHY Here, we revealed that pericytes transition into a contractile phenotype in human ATAA. We demonstrated that FGF2 maintained pericytes in a less contractile and high angiogenic stage via MAPK and PI3K-AKT signaling pathway, whereas we found FGF2 is decreased in the aortic adventitia of patients with ATAA. Our findings suggest how growth factor deficiency in the microenvironment affects pericytes during ATAA, offering leads for potential new therapies for aortic diseases.
Deficiency of fibroblast growth factor 2 promotes contractile phenotype of pericytes in ascending thoracic aortic aneurysm.
阅读:2
作者:Huang Weijian, Hill Jennifer C, Patel Sakshi, Richards Tara D, Sultan Ibrahim, Kaczorowski David J, Phillippi Julie A
期刊: | American Journal of Physiology-Heart and Circulatory Physiology | 影响因子: | 4.100 |
时间: | 2025 | 起止号: | 2025 May 1; 328(5):H1130-H1143 |
doi: | 10.1152/ajpheart.00834.2024 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。