Environmentally persistent free radicals (EPFRs) generated on particles under irradiation in water have attracted particular attention, and their formation mechanisms are not well understood. This study investigated the photoformation of EPFRs on both actual samples collected from an oil production plant in Panjin, Liaoning, China, and simulated Fe(III)-montmorillonite samples in water. The EPFRs detected on actual samples were not easily generated compared with those in the soil or in the air, based on the concentrations of identified PAHs. EPR signals in the range of 10(17) to 10(18) spin/g were detected on the simulated Fe(III)-montmorillonite samples. Their g factors were smaller than 2.0030, which indicated the generation of carbon-centered EPFRs. The primary byproducts were identified by chromatography-mass spectrometry (GC-MS), and a possible EPFR formation pathway during PAH degradation was proposed. Hydrogenation of PAHs during the photoformation of EPFRs was observed and might be due to the catalysis of the simulated particles and the interaction of the intermediates. Meanwhile, the effects of the typical anions (NO(2)(-) and Cl(-)) and the surfactant (TWEEN(®) 80 and sodium dodecyl sulfate) were investigated and indicated that the phototransformation process and adsorption process would affect the formation of EPFRs. Overall, our study provided useful information to understand the photoformation of EPFRs in aqueous environments.
Photoformation of Environmentally Persistent Free Radicals During Phototransformation of Poly-Cyclic Aromatic Hydrocarbons (PAHs) on Particles in an Aqueous Solution: The Hydrogenation of PAHs and Effect of Co-Existing Water Matrix Factors.
阅读:2
作者:Li Xintong, Qu Baocheng, Wang Jingyao, Zhao Hongxia
期刊: | Toxics | 影响因子: | 4.100 |
时间: | 2024 | 起止号: | 2024 Oct 31; 12(11):796 |
doi: | 10.3390/toxics12110796 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。