Catalysis-Induced Highly-Stable Interface on Porous Silicon for High-Rate Lithium-Ion Batteries.

催化诱导多孔硅上高稳定性界面用于高倍率锂离子电池

阅读:8
作者:Han Zhuobin, Maitarad Phornphimon, Yodsin Nuttapon, Zhao Baogang, Ma Haoyu, Liu Kexin, Hu Yongfeng, Jungsuttiwong Siriporn, Wang Yumei, Lu Li, Shi Liyi, Yuan Shuai, Xia Yongyao, Lv Yingying
Silicon stands as a key anode material in lithium-ion battery ascribing to its high energy density. Nevertheless, the poor rate performance and limited cycling life remain unresolved through conventional approaches that involve carbon composites or nanostructures, primarily due to the un-controllable effects arising from the substantial formation of a solid electrolyte interphase (SEI) during the cycling. Here, an ultra-thin and homogeneous Ti doping alumina oxide catalytic interface is meticulously applied on the porous Si through a synergistic etching and hydrolysis process. This defect-rich oxide interface promotes a selective adsorption of fluoroethylene carbonate, leading to a catalytic reaction that can be aptly described as "molecular concentration-in situ conversion". The resultant inorganic-rich SEI layer is electrochemical stable and favors ion-transport, particularly at high-rate cycling and high temperature. The robustly shielded porous Si, with a large surface area, achieves a high initial Coulombic efficiency of 84.7% and delivers exceptional high-rate performance at 25 A g(-1) (692 mAh g(-1)) and a high Coulombic efficiency of 99.7% over 1000 cycles. The robust SEI constructed through a precious catalytic layer promises significant advantages for the fast development of silicon-based anode in fast-charging batteries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。