BACKGROUND: Ribosome-inactivating proteins (RIPs) are a group of proteins known to inhibit protein synthesis and contribute to plant defense responses. Although the antiviral properties of various RIPs have been demonstrated, the antiviral potential of tritin, a type 1 RIP from bread wheat (Triticum aestivum L.), remains unexplored. This study aimed to investigate the antiviral activity of recombinant tritin against zucchini yellow mosaic virus (ZYMV) in zucchini (Cucurbita pepo L.) plants. METHODS: The tritin gene was isolated from the wheat cultivar Kutluk-94, cloned into the pETDuet-1 expression vector, and expressed in Escherichia coli BL21 (DE3) cells. Following induction, recombinant tritin was purified using Ni-NTA affinity chromatography. Antiviral activity was assessed by measuring morphological parameters, disease severity, and the expression levels of the ZYMV Coat Protein (CP) gene and the Pathogenesis-Related 1 (PR1) through quantitative real-time PCR. RESULTS: Tritin-treated plants exhibited significantly lower ZYMV-CP gene expression compared to virus-inoculated controls at 3- and 15- days post-inoculation. Furthermore, PR1 gene expression was upregulated in response to tritin application, suggesting the activation of systemic defense pathways. Morphological assessments revealed dose-dependent phytotoxic effects, including reductions in chlorophyll content and plant growth at higher tritin concentrations. CONCLUSION: This study represents the first report in demonstrating that recombinant tritin exhibits antiviral activity against ZYMV, reducing viral replication and enhancing defense gene expression in zucchini plants. However, the phytotoxic effects observed at higher concentrations suggest the need for dose optimization before agricultural application. These findings provide a promising basis for the development of RIP-based antiviral strategies to improve crop tolerance.
Recombinant tritin protein exhibits antiviral activity against zucchini yellow mosaic virus.
阅读:2
作者:DemiÌrel Serap, Usta Mustafa, Korkmaz Gülüstan, Kurt Zeynelabidin
期刊: | BMC Plant Biology | 影响因子: | 4.800 |
时间: | 2025 | 起止号: | 2025 Jul 29; 25(1):978 |
doi: | 10.1186/s12870-025-07080-x |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。