Metabolically intact nuclei are fluidized by the activity of the chromatin remodeling motor BRG1.

阅读:3
作者:Byfield Fitzroy J, Eftekhari Behnaz, Kaymak-Loveless Kaeli, Mandal Kalpana, Li David, Wells Rebecca G, Chen Wenjun, Brujic Jasna, Bergamaschi Giulia, Wuite Gijs J L, Patteson Alison E, Janmey Paul A
The structure and dynamics of the nucleus regulate cellular functions, with shape changes impacting cell motility. Although the nucleus is generally seen as the stiffest organelle in the cell, cells can nevertheless deform the nucleus to large strains by small mechanical stresses. Here, we show that the mechanical response of the cell nucleus exhibits active fluidization that is driven by the BRG1 motor of the SWI/SNF/BAF chromatin remodeling complex. Atomic force microscopy measurements show that the nucleus alters stiffness in response to the cell substrate stiffness, which is retained after the nucleus is isolated, and that the work of nuclear compression is mostly dissipated rather than elastically stored. Inhibiting BRG1 stiffens the nucleus and eliminates dissipation and nuclear remodeling both in isolated nuclei and in intact cells. These findings uncover a novel role of the BRG1 motor in nuclear mechanics, advancing our understanding of cell motility mechanisms.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。