DEFA1, Primarily Expressed at the Invasive Tumor Front, Promotes OSCC Cell Invasion and Tumor Growth.

DEFA1 主要在侵袭性肿瘤前沿表达,促进 OSCC 细胞侵袭和肿瘤生长

阅读:11
作者:Jeong Hojin, Park Sang Woong, Hwang Young Sun
BACKGROUND/AIM: The tumor microenvironment greatly influences cancer occurrence, progression, and treatment resistance, making it a key target alongside cancer cells. In squamous cell carcinoma, the invasive front is crucial for studying invasion mechanisms driven by the surrounding microenvironment and for identifying biomarkers to diagnose and predict invasive cancer. In this study, we aimed to elucidate the regulation of cancer characteristics through the interactions between factors at the invasive tumor front and the surrounding tumor microenvironment. MATERIALS AND METHODS: The invasive tumor front (ITF) and tumor center (TC) of collective cancer invasion were analyzed using microarray to compare gene expression. A stable cell line with depleted DEFA1 expression was established, and its effect on cancer growth was observed using a mouse tongue xenograft model. Invasive activity was assessed using Transwell assays. Gene profiling of cancer cells and analysis of secreted proteins interacting with U937 monocytic cells during co-culture were conducted using QuantSeq 3' mRNA sequencing and LC-MS/MS analysis. RESULTS: DEFA1 was overexpressed at the ITF of collective cancer invasion. YD10B cells with depleted DEFA1 expression exhibited significantly reduced invasiveness and tumor growth without changes in the cell cycle distribution. Co-culture with U937 cells significantly enhanced the invasiveness of YD10B cells, which was inhibited by anti-DEFA1 treatment. QuantSeq 3' mRNA sequencing and LC-MS/MS analyses confirmed that DEFA1 derived from U937 cells increased the invasiveness of YD10B cells. Recombinant DEFA1 (rDEFA1) significantly enhanced the invasiveness of YD10B cells via the JNK MAPK/NF-[Formula: see text]B signaling pathway, independent of changes in DEFA1 expression within YD10B cells. CONCLUSION: DEFA1 is crucial for cancer invasion and growth, and monocyte-derived DEFA1 exacerbates these traits. This study highlights DEFA1's role in promoting invasion at the tumor front, where interactions with the microenvironment are active.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。