Gene editing in hematopoietic stem cells by co-delivery of Cas9/sgRNA ribonucleoprotein and templates for homology-directed repair in 'all-in-one' lentivirus-derived nanoparticles.

通过在“一体化”慢病毒衍生的纳米颗粒中共同递送 Cas9/sgRNA 核糖核蛋白和同源定向修复模板,对造血干细胞进行基因编辑

阅读:8
作者:Andersen Sofie, Wolff Jonas Holst, Skov Thomas Wisbech, Janns Jacob Hørlück, Davis Luther John, Haldrup Jakob H, Haslund Didde, Revenfeld Anne Louise, Relkovic Dinko, Møller Bjarne K, Lund Jacob, Bak Rasmus O, Thomsen Emil Aagaard, Mikkelsen Jacob Giehm
Repair of double-strand DNA breaks generated by site-directed endonucleases, like Cas9, is the hallmark of gene editing based on homology-directed repair (HDR). HDR uses an exogenous DNA template to restore the cleaved DNA sequence and can facilitate specific gene corrections as well as insertion of genes or partial complementary DNA (cDNA) sequences. For CRISPR/Cas-directed gene editing, co-administration of the Cas9/single guide RNA (sgRNA) ribonucleoprotein (RNP) complex and a DNA template typically involves two different delivery strategies or different types of vehicles. This requires exquisite timing of delivery and may potentially challenge safety and therapeutic applicability. There is a need therefore for technologies that can ferry complete editing tool kits into cells. Here, we demonstrate the use of lentivirus-derived nanoparticles (LVNPs) to transport both RNP complexes and vector RNA, which upon reverse transcription serves as a repair template for HDR-directed gene editing. Such 'all-in-one' LVNPs support targeted gene insertion with reduced off-target effects relative to nucleofection procedures. We show potent editing in the HBB gene in human erythroid progenitor cells as well as HDR-directed editing in hematopoietic stem and progenitor cells. Our findings mark a first step toward using a single virus-derived vehicle for delivering a full HDR gene editing kit.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。