Acute Three-Dimensional Hypoxia Regulates Angiogenesis

急性三维缺氧调节血管生成

阅读:2
作者:Dimitris Ntekoumes ,Jiyeon Song ,Haohao Liu ,Connor Amelung ,Ya Guan ,Sharon Gerecht

Abstract

Hypoxia elicits a multitude of tissue responses depending on the severity and duration of the exposure. While chronic hypoxia is shown to impact development, regeneration, and cancer, the understanding of the threats of acute (i.e., short-term) hypoxia is limited mainly due to its transient nature. Here, a novel gelatin-dextran (Gel-Dex) hydrogel is established that decouples hydrogel formation and oxygen consumption and thus facilitates 3D sprouting from endothelial spheroids and, subsequently, induces hypoxia "on-demand." The Gel-Dex platform rapidly achieves acute moderate hypoxic conditions without compromising its mechanical properties. Acute exposure to hypoxia leads to increased endothelial cell migration and proliferation, promoting the total length and number of vascular sprouts. This work finds that the enhanced angiogenic response is mediated by reactive oxygen species, independently of hypoxia-inducible factors. Reactive oxygen species-dependent matrix metalloproteinases activity mediated angiogenic sprouting is observed following acute hypoxia. Overall, the Gel-Dex hydrogel offers a novel platform to study how "on-demand" acute moderate hypoxia impacts angiogenesis, with broad applicability to the development of novel sensing technologies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。