Mitochondrial dysfunction, iron accumulation, lipid peroxidation, and inflammasome activation in cellular models derived from patients with multiple sclerosis.

阅读:3
作者:García-Salas Raquel, Cilleros-Holgado Paula, Di Spirito Anna, Gómez-Fernández David, Piñero-Pérez Rocío, Romero-Domínguez José Manuel, Álvarez-Córdoba Mónica, Reche-López Diana, Romero-González Ana, López-Cabrera Alejandra, Sánchez-Alcázar José Antonio
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Despite advancements in managing relapsing active illness, effective treatments for the irreversible progressive decline in MS remain limited. Research employing skin fibroblasts obtained from patients with neurological disorders revealed modifications in cellular stress pathways and bioenergetics. However, research using MS patient-derived cellular models is scarce. In this study, we collected fibroblasts from two MS patients to investigate cellular pathological alterations. We observed that MS fibroblasts showed a senescent morphology associated with iron/lipofuscin accumulation and altered expression of iron metabolism proteins. In addition, we found increased lipid peroxidation and downregulation of antioxidant enzymes expression levels in MS fibroblasts. When challenged against erastin, a ferroptosis inducer, MS fibroblasts showed decreased viability, suggesting increased sensitivity to ferroptosis. Furthermore, MS fibroblasts presented alterations in the expression levels of autophagy-related proteins. Interestingly, these alterations were associated with mitochondrial dysfunction and inflammasome activation. These findings were validated in 7 additional patient-derived cell lines. Our findings suggest that the underlying stress phenotype of MS fibroblasts may be disease-specific and recapitulate the main cellular pathological alterations found in the disease such as mitochondrial dysfunction, iron accumulation, lipid peroxidation, inflammasome activation, and pro-inflammatory cytokine production.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。