Deep mutational learning for the selection of therapeutic antibodies resistant to the evolution of Omicron variants of SARS-CoV-2.

阅读:2
作者:Frei Lester, Gao Beichen, Han Jiami, Taft Joseph M, Irvine Edward B, Weber Cédric R, Kumar Rachita K, Eisinger Benedikt N, Ignatov Andrey, Yang Zhouya, Reddy Sai T
Most antibodies for treating COVID-19 rely on binding the receptor-binding domain (RBD) of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). However, Omicron and its sub-lineages, as well as other heavily mutated variants, have rendered many neutralizing antibodies ineffective. Here we show that antibodies with enhanced resistance to the evolution of SARS-CoV-2 can be identified via deep mutational learning. We constructed a library of full-length RBDs of Omicron BA.1 with high mutational distance and screened it for binding to the angiotensin-converting-enzyme-2 receptor and to neutralizing antibodies. After deep-sequencing the library, we used the data to train ensemble deep-learning models for the prediction of the binding and escape of a panel of eight therapeutic antibody candidates targeting a diverse range of RBD epitopes. By using in silico evolution to assess antibody breadth via the prediction of the binding and escape of the antibodies to millions of Omicron sequences, we found combinations of two antibodies with enhanced and complementary resistance to viral evolution. Deep learning may enable the development of therapeutic antibodies that remain effective against future SARS-CoV-2 variants.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。