Membranes require continuous reorganization of lipid components, including sterols, to dynamically alter their rigidity to deform and bend during scission events which occur during fundamental cellular functions such as endocytosis. While diseases of cholesterol biosynthesis result in reduced cellular cholesterol and accumulation of precursor sterols, limited studies have addressed the intracellular consequences of disease-associated sterol changes on the ability of eukaryotic cellular membranes to function and signal normally. Here, we utilized bone marrow-derived macrophages (BMDMs) to investigate how altered sterol content impacts macrophage signaling and membrane function. Through pharmacological inhibition of cholesterol biosynthetic enzymes, reduced cholesterol and increased levels of disease-associated sterol intermediates coincided with reduced expression of cell surface proteins and impaired macropinocytosis. Macropinocytic activity was sensitive to both reduced plasma membrane cholesterol and sterols containing functional groups substituted for the C3 hydroxyl group. Transcriptomic analyses of cholesterol-inhibited BMDMs revealed alterations in immune and chemokine signaling pathways. Decreased cholesterol was also associated with dysregulated vesicular sorting pathways and elevated expression of endosomal/lysosomal markers. Disrupted endosome expression and impaired macropinocytosis was also observed in BMDMs from mouse models of the cholesterol biosynthesis disorder Smith-Lemli-Opitz syndrome (SLOS). Our findings detail an important connection between sterol imbalance, membrane dynamics, and immune cell function.
Macrophage signaling and function are regulated by distinct sterol biochemistries.
巨噬细胞信号传导和功能受不同的甾醇生化过程调控
阅读:8
作者:Yaeger Jazmine D W, Kerkvliet Jason G, Pradhan Bijaya, Lawver Amelia G, Sengupta Sonali, Thiex Natalie W, Francis Kevin R
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Aug 11 |
| doi: | 10.1101/2025.08.07.669025 | 研究方向: | 信号转导、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
