Macrophage signaling and function are regulated by distinct sterol biochemistries.

阅读:2
作者:Yaeger Jazmine D W, Kerkvliet Jason G, Pradhan Bijaya, Lawver Amelia G, Sengupta Sonali, Thiex Natalie W, Francis Kevin R
Membranes require continuous reorganization of lipid components, including sterols, to dynamically alter their rigidity to deform and bend during scission events which occur during fundamental cellular functions such as endocytosis. While diseases of cholesterol biosynthesis result in reduced cellular cholesterol and accumulation of precursor sterols, limited studies have addressed the intracellular consequences of disease-associated sterol changes on the ability of eukaryotic cellular membranes to function and signal normally. Here, we utilized bone marrow-derived macrophages (BMDMs) to investigate how altered sterol content impacts macrophage signaling and membrane function. Through pharmacological inhibition of cholesterol biosynthetic enzymes, reduced cholesterol and increased levels of disease-associated sterol intermediates coincided with reduced expression of cell surface proteins and impaired macropinocytosis. Macropinocytic activity was sensitive to both reduced plasma membrane cholesterol and sterols containing functional groups substituted for the C3 hydroxyl group. Transcriptomic analyses of cholesterol-inhibited BMDMs revealed alterations in immune and chemokine signaling pathways. Decreased cholesterol was also associated with dysregulated vesicular sorting pathways and elevated expression of endosomal/lysosomal markers. Disrupted endosome expression and impaired macropinocytosis was also observed in BMDMs from mouse models of the cholesterol biosynthesis disorder Smith-Lemli-Opitz syndrome (SLOS). Our findings detail an important connection between sterol imbalance, membrane dynamics, and immune cell function.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。