Noninvasive Monitoring of Steatotic Liver Disease in Western Diet-Fed Obese Mice Using Automated Ultrasound and Shear Wave Elastography.

利用自动化超声和剪切波弹性成像技术对喂食西方饮食的肥胖小鼠进行无创性脂肪肝疾病监测

阅读:13
作者:Czernuszewicz Tomasz J, Wang Yanhan, Jiang Lu, Kim Kenneth, Mikulski Zbigniew, Aji Adam M, Rojas Juan D, Gessner Ryan C, Schnabl Bernd
BACKGROUND AND AIMS: Ultrasound imaging and shear wave elastography (SWE) can be used to noninvasively stage hepatopathologies and are widespread in clinical practice. These techniques have recently been adapted for small animal use in a novel 3D in vivo imaging system capable of high-throughput automated scanning. Our goal was to evaluate the feasibility of using this imaging tool in the murine Western diet (WD) model, a highly translatable preclinical model of obesity, metabolic disease and liver fibrosis. METHODS: Female C57BL/6 mice (N = 48) were placed on WD or chow diet and imaged longitudinally for a period of 48 weeks. Imaging consisted of 3D B-mode and targeted SWE captures. Liver volume, liver echogenicity and liver stiffness were quantified from in vivo imaging data. A subset of mice was sacrificed at various timepoints (0, 12, 24 and 48 weeks) for histological workup. Correlation analysis was performed between in vivo imaging and histological measurements to determine level of agreement. RESULTS: Noninvasive imaging showed statistically significant increases in liver volume and echogenicity, but non-significant increase in liver stiffness in the WD-fed cohort, suggesting development of hepatomegaly and steatosis, but negligible fibrosis. Ex vivo analysis confirmed significant increases in liver weight, liver triglycerides and ALT, but limited increases in fibrosis corroborating noninvasive imaging results. Correlation analysis between imaging and histology demonstrated good agreement between liver volume/liver weight (R(2) = 0.85) and echogenicity/triglycerides (R(2) = 0.76). CONCLUSIONS: This study demonstrated that noninvasive ultrasound liver assessments are feasible in the WD mouse model and closely reflect the underlying pathological state of the animal. Automated ultrasound can serve as a high-throughput noninvasive screening method for preclinical liver disease research and drug development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。