Intercellular bridges are essential to connect developing germline cells. The Drosophila melanogaster egg chamber is a powerful model system to study germline intercellular bridges, or ring canals (RCs). RCs connect the developing oocyte to supporting nurse cells, and defects in their stability or growth lead to infertility. Despite their importance, it has been technically difficult to use electron microscopy-based approaches to monitor changes in RC structure during oogenesis. Here, we describe the application of a complementary set of volume EM-based approaches to visualize ultrastructural changes in the germline RCs. The combination of array tomography (AT) and focused ion beam (FIB) scanning electron microscopy (SEM) has allowed us to gain insight into previously unappreciated aspects of RC structure. We were able to quantify differences in RC size and thickness within and between germ cell clusters at different developmental stages. Within a cluster, RC size correlates with lineage; the largest RCs were formed during the first division, and the smallest RCs were formed during the fourth mitotic division. We observed the formation of membrane interdigitations in the vicinity of RCs much earlier than previously reported, and reconstruction of a RC from a mid-stage EC provided insight into the 3D orientation of these extensive cell-cell contacts. Our imaging also revealed a novel membrane structure that appeared to line the interior of the RC lumen. Although the focus was on ultrastructural changes in the germline RCs, our dataset contains valuable details of additional cell types and structures, including the fusome, the germline stem cells and their niche, and the migrating border cells. This imaging framework could be applied to other tissues or samples that face similar technical challenges, where the small structure of interest is located within a large sample volume.
Complementary Volume Electron Microscopy-based approaches reveal ultrastructural changes in germline intercellular bridges of D. melanogaster.
阅读:3
作者:Kolotuev Irina, Williams Abigayle, Kizilyaprak Caroline, Pellegrino Stephanie, Lewellyn Lindsay
期刊: | bioRxiv | 影响因子: | 0.000 |
时间: | 2025 | 起止号: | 2025 Feb 23 |
doi: | 10.1101/2025.02.18.638836 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。