Metabolomic and Cellular Mechanisms of Drug-Induced Ototoxicity and Nephrotoxicity: Therapeutic Implications of Uric Acid Modulation.

阅读:3
作者:Guo Suhan, Cheng Cheng, Wu Yunhao, Shen Kaidi, Zhang Depeng, Chen Bin, Wang Xinyu, Shen Luping, Zhang Qixiang, Chai Renjie, Wang Guangji, Zhou Fang
Certain medications, including cisplatin and neomycin, often cause both hearing loss and renal dysfunction. This study aims to uncover the common mechanisms behind drug-induced ototoxicity and nephrotoxicity to aid early diagnosis and treatment. Metabolomic analyses reveal simultaneous disruptions in endogenous metabolic networks in the kidney, inner ear, and serum after administrating cisplatin or neomycin. Notably, a marked elevation in uric acid (UA), a recognized indicator of renal tubular injury, is identified. Supplementing UA and inhibiting its renal excretion worsen hearing loss and hair cell damage. Single-cell nucleus sequencing and immunohistochemistry reveal major changes in xanthine oxidase and ABCG2, crucial for UA metabolism, primarily in cochlear stria vascularis cells rather than hair cells. Cisplatin triggers a significant release of UA from stria vascularis cells, reaching concentrations sufficient to induce autophagy-dependent ferroptosis in hair cells. In a coculture system, targeted interventions against these two proteins in stria vascularis cells, through either pharmacological inhibition or genetic manipulation, markedly decrease the elevated UA release and the subsequent ferroptosis of hair cells. These findings suggest a metabolic connection between the inner ear and the kidney, highlighting the therapeutic potential of modulating UA to mitigate drug-induced nephrotoxicity and ototoxicity.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。