Aged and BRCA-Mutated Stromal Cells Drive Epithelial Cell Transformation.

衰老和携带 BRCA 突变的基质细胞驱动上皮细胞转化

阅读:8
作者:Garcia Geyon L, Orellana Taylor, Gorecki Grace, Frisbie Leonard, Baruwal Roja, Suresh Swathi, Goldfeld Ester, Beddows Ian, MacFawn Ian P, Britt Ananya K, Hale Macy M, Elhaw Amal Taher, Isett Brian R, Hempel Nadine, Bao Riyue, Shen Hui, Buckanovich Ronald J, Finkel Toren, Drapkin Ronny, Soong T Rinda, Bruno Tullia C, Atiya Huda I, Coffman Lan G
The fundamental steps in high-grade serous ovarian cancer (HGSOC) initiation are unclear, presenting critical barriers to the prevention and early detection of this deadly disease. Current models propose that fallopian tube epithelial (FTE) cells transform into serous tubal intraepithelial carcinoma (STIC) precursor lesions and subsequently into HGSOC. In this study, we report that an epigenetically altered mesenchymal stem cell niche, termed high-risk mesenchymal stromal/stem cell (hrMSC), exists prior to STIC lesion formation. hrMSCs are enriched in STIC stroma and contribute to a stromal "field effect" extending beyond the borders of the STIC lesion. hrMSCs promote DNA damage in FTE cells while also fostering FTE cell survival. hrMSCs induce malignant transformation of the FTE, resulting in metastatic cancer in vivo, indicating that hrMSCs promote cancer initiation. hrMSCs are significantly enriched in BRCA1/2 mutation carriers and increase with age. Combined, these findings indicate that hrMSCs can incite ovarian cancer initiation and have important implications for ovarian cancer detection and prevention. SIGNIFICANCE: This work demonstrates a critical role of fallopian tube stromal cells in HGSOC initiation with implications for the pathophysiology of HGSOC formation and the development of prevention and early detection strategies critically needed in this disease. Additionally, the identification of stromal-mediated epithelial transformation has broad implications for understanding pan-cancer initiation. See related commentary by Recouvreux and Orsulic, p. 1093.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。