Macrophage Ferroptotic Resistance Is Required for the Progression of Infantile Hemangioma.

阅读:3
作者:Liu Jingjing, Zhong Wenqun, Wang Rong, Wang Peipei, Tong Guoyong, Chai Maosheng, Sun Yu, Zhu Tianshuang, Huang Congfa, Yang Shaodong, Zhou Xiaoshun, Mou Dongsheng, Cai Yu
BACKGROUND: Ferroptosis is a programmed cell death caused by iron-dependent accumulation and cellular lipid peroxides, which is different from apoptosis and pyroptosis. This study investigated the possible effect of ferroptotic response in the pathogenesis of infantile hemangioma (IH). METHODS AND RESULTS: The staining level of 4-hydroxynonenal (4-HNE), the marker of ferroptotic cells, was significantly increased in the involutive IH samples compared with the proliferative samples (9 proliferative versus 12 involutive lesions, P=0.0152). By contrast, the expression of glutathione peroxidase 4 (GPX4), a key enzyme regulating ferroptotic resistance, was significantly increased in the involutive IH samples. Meanwhile, the GPX4 was richly expressed in macrophages of IH. The data from in vitro study showed that the mRNA (P=0.0002) and protein (P=0.0385) expression levels of GPX4 were significantly upregulated in macrophages cultured with hemangioma-derived stem cells conditional medium (HemSC-CM). Mechanistically, HemSC-CM promoted the expression of GPX4 in macrophages (P=0.0482) by increasing nuclear factor erythroid 2-related factor 2 translocation to the nucleus (P=0.0026). Additionally, inhibition of GPX4 or inducing ferroptosis in macrophages could inhibit progression of lesion in IH nude mice mode. CONCLUSIONS: Hemangioma-derived stem cells (HemSCs) could promote macrophage ferroptotic resistance through upregulating expression of GPX4, which is required for the progression of IH.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。