Macrophage Ferroptotic Resistance Is Required for the Progression of Infantile Hemangioma.

巨噬细胞铁凋亡抵抗是婴幼儿血管瘤进展所必需的

阅读:8
作者:Liu Jingjing, Zhong Wenqun, Wang Rong, Wang Peipei, Tong Guoyong, Chai Maosheng, Sun Yu, Zhu Tianshuang, Huang Congfa, Yang Shaodong, Zhou Xiaoshun, Mou Dongsheng, Cai Yu
BACKGROUND: Ferroptosis is a programmed cell death caused by iron-dependent accumulation and cellular lipid peroxides, which is different from apoptosis and pyroptosis. This study investigated the possible effect of ferroptotic response in the pathogenesis of infantile hemangioma (IH). METHODS AND RESULTS: The staining level of 4-hydroxynonenal (4-HNE), the marker of ferroptotic cells, was significantly increased in the involutive IH samples compared with the proliferative samples (9 proliferative versus 12 involutive lesions, P=0.0152). By contrast, the expression of glutathione peroxidase 4 (GPX4), a key enzyme regulating ferroptotic resistance, was significantly increased in the involutive IH samples. Meanwhile, the GPX4 was richly expressed in macrophages of IH. The data from in vitro study showed that the mRNA (P=0.0002) and protein (P=0.0385) expression levels of GPX4 were significantly upregulated in macrophages cultured with hemangioma-derived stem cells conditional medium (HemSC-CM). Mechanistically, HemSC-CM promoted the expression of GPX4 in macrophages (P=0.0482) by increasing nuclear factor erythroid 2-related factor 2 translocation to the nucleus (P=0.0026). Additionally, inhibition of GPX4 or inducing ferroptosis in macrophages could inhibit progression of lesion in IH nude mice mode. CONCLUSIONS: Hemangioma-derived stem cells (HemSCs) could promote macrophage ferroptotic resistance through upregulating expression of GPX4, which is required for the progression of IH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。