Chemotherapy-induced hematopoietic toxicity is a multifactorial challenge in the treatment of oncology patients. The resultant bone marrow suppression is a major dose-limiting side effect. In this study, we utilized 5-fluorouracil (5-FU), a commonly used chemotherapeutic agent, to investigate the mechanisms underlying bone marrow recovery following chemotherapy. A single injection of 5-FU did not alter mouse bone structure but caused acute damage to bone marrow cellularity and vasculature. Single-cell RNA-sequencing of bone marrow mesenchymal lineage cells revealed a substantial reduction in early mesenchymal progenitors and a marked expansion of marrow adipogenic lineage precursors (MALPs) five days post-treatment. Furthermore, 5-FU upregulated the expression of myofibroblast markers in MALPs, indicating a myofibroblast transformation. Using Adipoq-Cre to label MALPs in vivo, we observed that 5-FU transiently increases the number of MALPs in the bone marrow by promoting their proliferation. Immunostaining confirmed the elevated expression of myofibroblast markers in MALPs. By day 14 after 5-FU injection, bone marrow cellularity and vasculature were largely restored; however, the ablation of MALPs significantly impaired this recovery. Taken together, our study uncovers the critical role of MALPs in facilitating bone marrow repair following chemotherapy-induced injury and identifies them as a potential cellular target for treating chemotherapy-induced myelosuppression.
Marrow adipogenic lineage precursors (MALPs) facilitate bone marrow recovery after chemotherapy.
阅读:6
作者:Wang Huan, Yao Lutian, Zhong Leilei, Fang Jiankang, He Qi, Busch Theresa M, Cengel Keith, Qin Ling
期刊: | Bone | 影响因子: | 3.600 |
时间: | 2025 | 起止号: | 2025 Jun;195:117446 |
doi: | 10.1016/j.bone.2025.117446 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。