Loss of ATG7 in microglia impairs UPR, triggers ferroptosis, and weakens amyloid pathology control.

阅读:2
作者:Cai Zhangying, Wang Shoutang, Cao Siyan, Chen Yun, Penati Silvia, Peng Vincent, Yuede Carla M, Beatty Wandy L, Lin Kent, Zhu Yiyang, Zhou Yingyue, Colonna Marco
Microglia impact brain development, homeostasis, and pathology. One important microglial function in Alzheimer's disease (AD) is to contain proteotoxic amyloid-β (Aβ) plaques. Recent studies reported the involvement of autophagy-related (ATG) proteins in this process. Here, we found that microglia-specific deletion of Atg7 in an AD mouse model impaired microglia coverage of Aβ plaques, increasing plaque diffusion and neurotoxicity. Single-cell RNA sequencing, biochemical, and immunofluorescence analyses revealed that Atg7 deficiency reduces unfolded protein response (UPR) while increasing oxidative stress. Cellular assays demonstrated that these changes lead to lipoperoxidation and ferroptosis of microglia. In aged mice without Aβ buildup, UPR reduction and increased oxidative damage induced by Atg7 deletion did not impact microglia numbers. We conclude that reduced UPR and increased oxidative stress in Atg7-deficient microglia lead to ferroptosis when exposed to proteotoxic stress from Aβ plaques. However, these microglia can still manage misfolded protein accumulation and oxidative stress as they age.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。