In the era of combined antiretroviral therapy, around 50% of chronic HIV (+) individuals show varying degrees of memory and cognitive deficiency (NeuroHIV), a phenomenon of accelerated brain aging. HIV protein transactivator of transcription (TAT) has been well-accepted as a risk factor contributing to NeuroHIV through dysregulating microglia (Mg) functions. Previous studies have demonstrated that HIV-TAT can affect lipid metabolism, immune responses, autophagy, and senescence in rodent Mg. However, due to the significant species differences between rodent and human Mg (hMg), it is essential to take caution when interpreting the results obtained from rodent models into human conditions. For the unanswered questions, we generated hMg from human inducible pluripotent stem cells (iPSCs) and exposed them to HIV-TAT. The results obtained from Flow analysis and immunostaining experiments reveal that TAT can induce LD accumulation and increase perilipin-2 (Plin2) levels in hMg. Meanwhile, HIV-TAT can upregulate autophagosome formation and p53 levels. Through human immune array assay, we showed that TAT can increase the expression of multiple pro-inflammatory mediators, cytokines, and chemokines in hMg. Extensive bioinformatic analysis shows that HIV-TAT can affect multiple neuroimmune signaling pathways and indicates that microRNAs (miRNAs) are coherently involved in such dysregulation. Overall, our findings provide direct evidence showing that HIV-TAT can affect lipid metabolism, autophagy, senescence signaling, and multiple neuroimmune-related pathways in hMg and indicate the roles of novel miRNAs on NeuroHIV pathogenesis, which deserves further investigations.
HIV Protein TAT Dysregulates Multiple Pathways in Human iPSCs-Derived Microglia.
HIV蛋白TAT在人类iPSCs衍生的小胶质细胞中失调多个通路
阅读:10
作者:Guo Liam Liyang, Jiang Robert, Cheng Yan, Russell Brooke, Yan Sanders Y, Guo Ming-Lei
| 期刊: | Life-Basel | 影响因子: | 3.400 |
| 时间: | 2025 | 起止号: | 2025 Jul 9; 15(7):1082 |
| doi: | 10.3390/life15071082 | 种属: | Human |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
