Nonalcoholic fatty liver disease (NAFLD) is characterized by increased lipid accumulation and excessive deposition of extracellular matrix (ECM) that results in tissue stiffening. The potential interplay between matrix stiffness and hepatocyte lipid accumulation during NAFLD has not been established. Here, an in vitro NAFLD model is developed using chemically defined, engineered hydrogels and human induced pluripotent stem cell-derived hepatic organoids (HOs). Specifically, dynamic covalent chemistry crosslinking, along with transient small molecule competitors, are used to create dynamic stiffening hydrogels that enable the reproducible culture of HOs. Within matrices that mimic the stiffness of healthy to diseased tissue (â1-6Â kPa), lipid droplet accumulation in HOs is triggered by exposure to an NAFLD-associated free fatty acid. These NAFLD model suggests that higher stiffness microenvironments result in increased hepatic lipid droplet accumulation, increased expression of fibrosis markers, and increased metabolic dysregulation. By targeting the ROCK mechanosignaling pathway, the synergy between matrix stiffness and lipid droplet accumulation is disrupted. The in vitro model of NAFLD has the potential to understand the role of mechanosignaling in disease progression and identify new pathways for therapeutic intervention.
Engineered Hydrogels for Organoid Models of Human Nonalcoholic Fatty Liver Disease.
用于构建人类非酒精性脂肪肝疾病类器官模型的工程化水凝胶
阅读:5
作者:Liu Yueming, Gilchrist Aidan E, Johansson Patrik K, Guan Yuan, Deras Jaydon D, Liu Yu-Chung, Ceva Sofia, Huang Michelle S, Navarro Renato S, Enejder Annika, Peltz Gary, Heilshorn Sarah C
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 Jun;12(22):e17332 |
| doi: | 10.1002/advs.202417332 | 种属: | Human |
| 研究方向: | 其它 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
