Rubber waste remains a challenge for material science because its covalently cross-linked structure hinders the establishment of the circular economy of rubber. Devulcanisation may provide a solution, as it converts rubber vulcanisates back into their original, uncured state. Devulcanised rubber may be revulcanised or incorporated into virgin rubber, thus waste is utilized and the use of primary resources is reduced at the same time. In this paper, we treated sulphur-cured EPDM (ethylene propylene diene monomer) rubber on a two-roll mill at various temperatures and frictions. We determined the effectiveness of devulcanisation via Horikx's analysis, which suggested that low devulcanisation temperatures would result in a 50% decrease in cross-link density with minimal polymer degradation. The devulcanisate was recycled via two methods: (a) revulcanisation with extra curing agents, and (b) mixing it with various amounts of the original rubber mixture, preparing rubber samples with 25, 50, 75, and 100 wt% recycled content. Tensile tests revealed that the samples' elastic properties were severely compromised at 75 and 100 wt% devulcanisate contents. However, tensile strength decreased only by 15% and 20% for revulcanisates containing 25% and 50% recycled rubber, respectively.
Thermomechanical Devulcanisation of Ethylene Propylene Diene Monomer (EPDM) Rubber and Its Subsequent Reintegration into Virgin Rubber.
阅读:2
作者:Pirityi Dávid Zoltán, Pölöskei Kornél
期刊: | Polymers | 影响因子: | 4.900 |
时间: | 2021 | 起止号: | 2021 Apr 1; 13(7):1116 |
doi: | 10.3390/polym13071116 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。