TBC1D20 coordinates vesicle transport and actin remodeling to regulate ciliogenesis.

阅读:3
作者:Zhai Denghui, Li Lamei, Wang Difei, Wang Weishu, Zhao Siyang, Wang Xue, Chen Cheng, Zhu Zixuan, Bu Weiwen, Yang Mulin, Yin Hanxiao, Shan Ying, Zhao Huijie, Westlake Christopher J, Lu Quanlong, Zhou Jun
TBC1D20 deficiency causes Warburg Micro Syndrome in humans, characterized by multiple eye abnormalities, severe intellectual disability, and abnormal sexual development, but the molecular mechanisms remain unknown. Here, we identify TBC1D20 as a novel Rab11 GTPase-activating protein that coordinates vesicle transport and actin remodeling to regulate ciliogenesis. Depletion of TBC1D20 promotes Rab11 vesicle accumulation and actin deconstruction around the centrosome, facilitating the initiation of ciliogenesis even in cycling cells. Further investigations reveal enhanced Rab11-MICAL1 interaction upon TBC1D20 loss, activating the monooxygenase domain of MICAL1 and inducing F-actin depolymerization around the centrosome. This actin network reorganization facilitates vesicle trafficking and docking, ultimately promoting ciliogenesis. In summary, our work uncovers a coordinated ciliogenesis initiation mechanism via Rab11 activation. These findings underscore a pivotal role for TBC1D20 in early ciliogenesis, advancing our understanding of its spatiotemporal regulation and offering insights into the disease pathogenesis associated with TBC1D20 mutations.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。