Objective: This study characterizes the effects of external conductivity on electroporation to develop methods to overcome potential patient-to-patient variability. Impact Statement: We demonstrate that constant power pulsed electric fields (PEFs) achieve consistent treatment outcomes despite variations in conductivity, thereby improving the predictability and efficacy of electroporation-based therapies. Introduction: Electropermeabilization-based therapies typically deliver static voltages between electrodes to induce cell permeabilization. However, tissue conductivity variations introduce uncertainty in treatment outcomes, as the tissue-specific electric field thresholds that induce electroporation also depend on the extracellular conductivity. Methods: Cell-laden hydrogels were fabricated with varying extracellular conductivities and treated with constant voltage PEFs. The voltages and currents were recorded to calculate the applied powers, and the reversible and irreversible electroporation thresholds were quantified using cell-impermeant and viability assays. Homogeneous and heterogeneous multi-tissue finite element models were employed to simulate the impact of tumor conductivity variability on the outcomes of reversible and irreversible electroporation for constant applied voltage, current, and power PEFs. Additionally, an in vivo murine pancreatic tumor model assessed the correlation between PEF delivery and treatment efficacy. Results: The In vitro experiments revealed that the electric field and current density thresholds were conductivity dependent, whereas the power density thresholds remained stable under variable conductivities. Computational modeling indicated that constant power PEFs best predicted tumor coverage in both homogeneous and heterogeneous multi-tissue models. Similarly, the in vivo tumor responses were also better predicted by applied power rather than voltage or current alone. Conclusions: Applying constant power PEFs enables consistent electroporation outcomes despite variations in conductivity.
Power-Driven Electroporation Is Predictive of Treatment Outcomes in a Conductivity-Independent Manner.
阅读:4
作者:Jacobs Edward J, Arroyo Julio P, Powar Manali, Santos Pedro P, Allen Irving, Davalos Rafael
期刊: | BME Frontiers | 影响因子: | 7.700 |
时间: | 2025 | 起止号: | 2025 Aug 12; 6:0169 |
doi: | 10.34133/bmef.0169 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。