Conformational changes triggered by kinase inhibitors are a major factor driving specificity and efficacy, but few scalable methods exist for differentiating induced conformations and binding modes. Using the receptor tyrosine kinase MET, we show that three classes of inhibitors can be distinguished by their contrasting effects on static and dynamic quenching of a fluorescent dye attached to the activation loop. Quenching is mediated by tyrosine residues on the flexible activation loop, and inhibitor binding induces order in the loop, sequestering the tyrosines and differentially suppressing static and dynamic quenching in a manner that is dependent on the induced structural state. Type I MET inhibitors have a large static and moderate dynamic component, type II inhibitors have only a static component, and active-state-selective inhibitors relieve both components to similar extents. These distinct dequenching signatures allow the straightforward detection of each binding mode by using parallel steady-state and time-resolved fluorescence measurements. We show that this technique can be applied to rapidly assess the effects of resistance mutations on inhibitor binding and can report on the chemical interactions and conformational changes that drive these effects. Conservation of the three activation loop tyrosine residues across many receptor tyrosine kinases suggests that this approach has broad utility.
Tyrosine-Mediated Static and Dynamic Quenching of a Receptor Tyrosine Kinase Biosensor Reveals Inhibitor Binding Modes and Kinase Conformations.
酪氨酸介导的受体酪氨酸激酶生物传感器的静态和动态猝灭揭示了抑制剂结合模式和激酶构象
阅读:7
作者:Baker Zachary D, Thompson Andrew R, Thomas David D, Levinson Nicholas M
| 期刊: | ACS Chemical Biology | 影响因子: | 3.800 |
| 时间: | 2025 | 起止号: | 2025 Jul 18; 20(7):1683-1695 |
| doi: | 10.1021/acschembio.5c00224 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
