TRDMT1 methyltransferase gene knockout attenuates STING-based cell death signaling during self-extracellular RNA-mediated response in drug-induced senescent osteosarcoma cells.

TRDMT1 甲基转移酶基因敲除减弱了药物诱导衰老骨肉瘤细胞中自身细胞外 RNA 介导的反应期间基于 STING 的细胞死亡信号

阅读:5
作者:Betlej Gabriela, Deręgowska Anna, Wnuk Maciej, Błoniarz Dominika, Szmatoła Tomasz, Klimczak Katarzyna, Adamczyk-Grochala Jagoda, Świętoń Julia, Lewińska Anna
Under stress conditions, endogenous biomolecules such as nucleic acids or proteins can be released from damaged cells and considered as damage-associated molecular patterns (DAMPs) activating innate immune system and context-dependent responses. In the present study, self-extracellular RNA was obtained from dying (RNA D) and senescent (RNA S) cellular models of osteosarcoma (OS), characterized by NGS, and tested against proliferating and non-proliferating (etoposide-indued senescent) OS cells (U-2 OS, SaOS-2, MG-63, 143B). RNA D and RNA S induced apoptosis, nitro-oxidative stress, nucleic acid sensing pathways and cytokine production, and RNA m(5)C methyltransferase-based responses (TRDMT1 and NSUN2) in proliferating OS cells. In drug-induced senescent OS cells, TRDMT1 gene knockout (KO) prevented STING activation, related proinflammatory response, and cell death. Furthermore, IFN-β binding RNA partners were identified, namely NSUN2, NSUN5, NSUN6, CDKN1A, MYC, and RAD51 transcripts and these interactions were compromised in TRDMT1 KO cells and upon RNA D and RNA S treatment. TRDMT1 KO also resulted in replication stress in OS cells that was potentiated by RNA D and RNA S stimulation and associated with elevated levels of APOBEC3A and APOBEC3G, members of the cytidine deaminase protein family. In conclusion, we showed that TRDMT1 KO restricted STING-based immune and cell death response to RNA D and RNA S in non-proliferating drug resistant OS cells that might have potential therapeutic implications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。