The SGLT2 inhibitor canagliflozin attenuates mitochondrial oxidative stress and alterations of calcium handling induced by high glucose in human cardiac fibroblasts.

阅读:2
作者:Varzideh Fahimeh, Kansakar Urna, Wilson Scott, Jankauskas Stanislovas S, Santulli Gaetano
Cardiac fibrosis and remodeling are critical contributors to heart failure, particularly in the context of diabetes, where hyperglycemia (HG) exacerbates pathological fibroblast activity. Despite the known cardiovascular benefits of canagliflozin (CANA), its specific effects on human cardiac fibroblasts (HCFs) under HG conditions remain unexplored. We investigated whether CANA could mitigate HG-induced detrimental responses in HCFs. Dose-response assays revealed that 100 nM CANA significantly reduced HG-induced proliferation and migration of HCFs. Furthermore, CANA attenuated mitochondrial reactive oxygen species (ROS) production, a key driver of myofibroblast differentiation, and suppressed HG-induced expression of SMAD2, a critical activator of cardiac fibroblasts. Additionally, HG disrupted calcium (Ca(2+)) homeostasis, which was ameliorated by CANA treatment. These findings collectively demonstrate that CANA exerts protective effects on HCFs by improving mitochondrial function, restoring Ca(2+) handling, and reducing fibroblast proliferation, migration, and activation under HG conditions.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。