Mitochondrial ROS drive foam cell formation via STAT5 signaling in atherosclerosis

线粒体活性氧通过STAT5信号通路驱动动脉粥样硬化中的泡沫细胞形成

阅读:1
作者:Laura Boccuni ,Frieda Marka ,Manuel Salzmann ,Alessia Schirripa ,Elisabeth Ableitner ,Magdalena Siller ,Mira Brekalo ,Patrick Haider ,Stefan Stojkovic ,Christoph Neumayer ,Tiit Örd ,Karoline Kollmann ,Alice Assinger ,Thomas Decker ,Thomas Köcher ,Michael B Fischer ,Marion Mußbacher ,Andreas Bergthaler ,Christian Hengstenberg ,Bruno K Podesser ,Minna U Kaikkonen ,Johann Wojta ,Philipp J Hohensinner
Macrophage-to-foam cell transition is an integral part of atherosclerotic plaque progression. Particularly, oxidized low-density lipoprotein (oxLDL) is a driving factor in foam cell formation, altering macrophage function and metabolism. The aim of our research was to understand the impact of oxLDL-induced mitochondrial reactive oxygen species on macrophage-to-foam cell differentiation. We demonstrate that macrophage oxLDL-derived superoxide modulates mitochondrial metabolic reprogramming, facilitating foam cell formation. Mechanistically, mitochondrial superoxide drives signal transducers and activators of transcription 5 (STAT5) activation, leading to reduced tricarboxylic acid cycle activity. In parallel, mitochondrial superoxide enhances chromatin accessibility at STAT5 target genes, establishing a distinct STAT5 signaling signature in foam cells ex vivo and in human and mouse plaques in vivo. Inhibition of STAT5 during atherosclerosis progression prevents the differentiation of macrophages to mature Trem2(hi)Gpnmb(hi) foam cells. Collectively, our data describe an oxLDL-induced, mitochondrial superoxide-dependent STAT5 activation that leads to a self-amplifying feedback loop of reciprocal mitochondrial superoxide production and STAT5 activation, ultimately driving macrophage-to-foam cell transition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。