Confined Migration Drives Stem Cell Differentiation.

阅读:3
作者:Gao Xu, Li Yixuan, Lee Jia Wen Nicole, Zhou Jianxuan, Rangaraj Vaishnavi, Marlena Jennifer, Holle Andrew W
In both endogenous and exogenously-introduced human mesenchymal stem cells (hMSCs), homing to sites of regeneration requires navigation through complex extracellular matrix environments that impose confinement on migrating cells. Despite its prevalence in vivo, the impact of confinement on hMSC differentiation remains poorly understood. To address these questions, a physiologically relevant, flow-free polydimethylsiloxane-based microchannel system with confining widths ranging from 3 to 10 µm in width, is developed. In these microchannel systems, it is found that hMSCs migrate faster and experience significant nuclear deformation in 3 µm wide channels compared to wider 10 µm channels. These morphological changes persist for days postexit, implying that stem cells possess a mechanical memory of their past confined migration. High degrees of nuclear deformation also correlated with substantial changes in genome regulation, as cells displayed significant H3K9 acetylation postconfinement. In these postconfinement stem cells, significantly higher expression levels of RUNX2 along with a higher degree of nuclear-to-cytoplasmic shuttling are found, suggesting that short confined migration can stimulate osteogenic differentiation. Finally, it is found that nuclear mechanosensing via the cytoskeleton is not the primary factor driving confinement-induced differentiation. These results suggest that physiological confinement can serve as a key mechanical cue promoting early osteogenic differentiation in hMSCs.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。