Morphological control of merlin-Rac antagonism in proliferation-promoting signaling.

阅读:2
作者:Weiss Byron G, Keth Justine M, Bhatt Kushal, Doyal Meghan, Hahn Klaus M, Noh Jungsik, Isogai Tadamoto, Danuser Gaudenz
The extension of lamellipodia, which are thin, fanlike projections at the cell periphery, requires the assembly of branched actin networks under the control of the small GTPase Rac1. In melanoma, a hyperactive P29S Rac1 mutant is associated with resistance to inhibitors that target the kinases BRAF and MAPK and with more aggressive disease because it sequesters and inactivates the tumor suppressor merlin (encoded by NF2) inside abnormally large lamellipodia. Here, we investigated how these merlin-inactivating lamellipodia are maintained using quantitative, live cell imaging of cell morphology and signaling dynamics. We showed that Rac1 and merlin activity were regulated in spatially confined regions or microdomains within the lamellipodium. The role of merlin as a proliferation-limiting tumor suppressor required its ability to inhibit lamellipodial extension and to locally inhibit Rac1 signaling. Conversely, local inactivation of merlin in lamellipodia released these restraints on morphology and signaling, leading to enhanced proliferation. Merlin and Rac1 are thus in a morphologically and dynamically regulated double-negative feedback loop, a signaling motif that can amplify and stabilize modest stimuli of lamellipodia extensions that enable melanoma to sustain mitogenic signaling under growth challenge. This represents an example of how acute oncogenicity is promoted by collaborations between cell morphological programs and biochemical signaling.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。