Renal fibrosis is a common pathway involved in the progression of various chronic kidney diseases to end-stage renal disease. Recent studies show that mitochondrial injury of renal tubular epithelial cells (RTECs) is a crucial pathological foundation for renal fibrosis. However, the underlying regulatory mechanisms remain unclear. Pyruvate carboxylase (PC) is a catalytic enzyme located within the mitochondria that is intricately linked with mitochondrial damage and metabolism. In the present study, the downregulation of PC in various fibrotic animal and human kidney samples is demonstrated. Renal proximal tubule-specific Pcx gene knockout mice (Pcx(cKO)) has significant interstitial fibrosis compared to control mice, with heightened expression of extracellular matrix molecules. This is further demonstrated in a stable PC knock-out RTEC line. Mechanistically, PC deficiency reduces its interaction with sulfide:quinone oxidoreductase (SQOR), increasing the ubiquitination and degradation of SQOR. This leads to mitochondrial morphological and functional disruption, increased mtDNA release, activation of the cGAS-STING pathway, and elevated glycolysis levels, and ultimately, promotes renal fibrosis. This study investigates the molecular mechanisms through which PC deficiency induces mitochondrial injury and metabolic reprogramming in RTECs. This study provides a novel theoretical foundation and potential therapeutic targets for the pathogenesis and treatment of renal fibrosis.
Deletion of Pyruvate Carboxylase in Tubular Epithelial Cell Promotes Renal Fibrosis by Regulating SQOR/cGAS/STING-Mediated Glycolysis.
肾小管上皮细胞中丙酮酸羧化酶的缺失通过调节 SQOR/cGAS/STING 介导的糖酵解促进肾纤维化
阅读:7
作者:Huang Hao, Han Yuanyuan, Zhang Yan, Zeng Jianhua, He Xin, Cheng Jiawei, Wang Songkai, Xiong Yiwei, Yin Hongling, Yuan Qiongjing, Huang Ling, Xie Yanyun, Meng Jie, Tao Lijian, Peng Zhangzhe
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 Apr;12(13):e2408753 |
| doi: | 10.1002/advs.202408753 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
