DNA integrity is constantly challenged by both endogenous and exogenous damaging agents, resulting in various forms of damage. Failure to repair DNA accurately leads to genomic instability, a hallmark of cancer. Distinct pathways exist to repair different types of DNA damage. Double-strand breaks (DSBs) represent a particularly severe form of damage, due to the physical separation of DNA strands. The repair of DSBs requires the activity of RNA Polymerase II (RNAPII) and the generation of Damage-responsive transcripts (DARTs). Here we show that the RNA m(5)C-methyltransferase NSUN2 localises to DSBs in a transcription-dependent manner, where it binds to and methylates DARTs. The depletion of NSUN2 results in an accumulation of nascent primary DARTs around DSBs. Furthermore, we detect an RNA-dependent interaction between NSUN2 and DICER, which is stimulated by DNA damage. NSUN2 activity promotes DICER cleavage of DARTs-associated R-loops, which is required for efficient DNA repair. We report a role of the RNA m(5)C -methyltransferase NSUN2 within the RNA-dependent DNA damage response, highlighting its function as a DICER chaperone for the clearance of non-canonical substrates such as DARTs, thereby contributing to genomic integrity.
NSUN2 facilitates DICER cleavage of DNA damage-associated R-loops to promote repair.
阅读:3
作者:Alagia Adele, Ajit Kamal, Di Fazio Arianna, Long Qilin, Gullerova Monika
期刊: | Nature Communications | 影响因子: | 15.700 |
时间: | 2025 | 起止号: | 2025 Aug 23; 16(1):7882 |
doi: | 10.1038/s41467-025-63220-9 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。