Isolation and Screening of the Novel Multi-Trait Strains for Future Implications in Phytotechnology.

分离和筛选新型多性状菌株及其在植物技术中的未来应用

阅读:13
作者:Batykova Zhuldyz, Pidlisnyuk Valentina, Kistaubayeva Aida, Ust'ak Sergey, Savitskaya Irina, Saidullayeva Laila, Mamirova Aigerim
Plant growth-promoting rhizobacteria (PGPRs) colonise the rhizosphere and root surfaces, enhancing crop development through a variety of mechanisms. This study evaluated microbial strains isolated from Triticum aestivum L. for key plant growth-promoting traits, including indole-3-acetic acid (IAA) production, phosphate and zinc (Zn) solubilisation, nitrogen (N(2)) fixation, and antifungal activity. Among 36 isolates, 3 (AS8, AS23, AS31) exhibited strong growth-promoting potential. IAA production, citrate assimilation, carbohydrate fermentation, and catalase activity were observed to a comparable extent among the selected strains. AS8 showed the highest protease, lipase, and amylolytic activity, while AS23 demonstrated superior phosphate and Zn solubilisation. Notably, AS31 emerged as the most promising multi-trait isolate, exhibiting the highest levels of IAA production, N(2) fixation, antifungal activity against five phytopathogens (Fusarium graminearum, F. solani, F. oxysporum, Pythium aphanidermatum, and Alternaria alternata), potentially linked to its hydrogen sulphide (H(2)S) production, and cellulolytic activity. Molecular identification based on 16S rRNA gene sequencing revealed the isolates as Stenotrophomonas indicatrix AS8, Pantoea agglomerans AS23, and Bacillus thuringiensis AS31. Seed germination assays confirmed the plant growth-promoting efficacy of these PGPR strains, with vigour index increases of up to 43.4-fold. Given their positive impact on seed germination and significant Zn-solubilising abilities, the selected strains represent promising candidates for use as bio-inoculants, offering a sustainable and eco-friendly strategy to enhance agricultural productivity in nutrient-deficient soils. Future research should validate the efficacy of these PGPR strains under pot conditions to confirm their potential for practical agricultural applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。