Human-specific gene expansions contribute to brain evolution.

阅读:2
作者:Soto Daniela C, Uribe-Salazar José M, Kaya Gulhan, Valdarrago Ricardo, Sekar Aarthi, Haghani Nicholas K, Hino Keiko, La Gabriana, Mariano Natasha Ann F, Ingamells Cole, Baraban Aidan, Jamal Zoeb, Turner Tychele N, Green Eric D, Simó Sergi, Quon Gerald, Andrés Aida M, Dennis Megan Y
Duplicated genes expanded in the human lineage likely contributed to brain evolution, yet challenges exist in their discovery due to sequence-assembly errors. We used a complete telomere-to-telomere genome sequence to identify 213 human-specific gene families. From these, 362 paralogs were found in all modern human genomes tested and brain transcriptomes, making them top candidates contributing to human-universal brain features. Choosing a subset of paralogs, long-read DNA sequencing of hundreds of modern humans revealed previously hidden signatures of selection, including for T cell marker CD8B. To understand roles in brain development, we generated zebrafish CRISPR "knockout" models of nine orthologs and introduced mRNA-encoding paralogs, effectively "humanizing" larvae. Our findings implicate two genes in possibly contributing to hallmark features of the human brain: GPR89B in dosage-mediated brain expansion and FRMPD2B in altered synapse signaling. Our holistic approach provides insights and a comprehensive resource for studying gene expansion drivers of human brain evolution.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。