Genetic Engineering of VHH Antibody Fragments for Efficient Site-Specific Conjugation to Polysaccharides.

阅读:3
作者:Zhong Lin, Morshuis Lisanne C M, Koerselman Michelle, Memelink Angela, Kolecka Anna, Heukers Raimond, Verrips Theo, Karperien Marcel, Zoetebier Bram
Site-selective modifications of proteins, without compromising their biological activity, are highly sought after due to their critical role in many biomedical applications. Here, we established a universal and efficient approach for site-selective conjugation of a variable domain of single-chain heavy-chain only antibody fragments (VHH) to polysaccharides using thiol-maleimide chemistry, known for its specificity and efficiency. This is achieved by genetically engineering an unpaired cysteine (Cys) residue in a C-terminal extension of VHHs. In this study, we synthesized two maleimide-functionalized polysaccharides, i.e., dextran-maleimide (Dex-Mal) and hyaluronic acid-maleimide (HA-Mal), for protein conjugation. Six distinct VHHs were selected and engineered with C-terminal extensions containing Cys residues for conjugation with Dex-Mal and HA-Mal. Conjugation efficiency varied among VHHs due to structural heterogeneity, which influenced the reactivity of the engineered Cys residues. One VHH, specific to TNFα (anti-TNFα-VHH), exhibited low conjugation efficiency (<20%); however, efficiency was fully restored when a flexible glycine-serine G(4)S linker was introduced between the variable domain and the C-terminal Cys tag. Additionally, incorporation of two free Cys residues in the C-terminal tail further enhanced conjugation efficiency. This work establishes a robust and versatile approach for generating protein-polysaccharide conjugates, paving the way for therapeutic and diagnostic applications.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。