BACKGROUND: The immunosuppressive tumor microenvironment (TME) in lung cancer, driven in part by M2-polarized tumor-associated macrophages (TAMs), contributes to worse prognosis and supports tumor progression. Cinobufagin (CB), an active compound in cinobufotalin injections, has demonstrated potential antitumor effects by modulating macrophage activity. This study investigated the mechanism by which CB influences glucose metabolism and polarization in M2 TAMs by focusing on the regulation of HIF-1α. METHODS: Human THP-1 monocytes were differentiated into M2 macrophages by stimulation with interleukin-4 at 20 ng/mL and then treated with cinobufagin at 2 μM, either alone or together with the HIF-1α activator DMOG at 1 mM. HIF-1α hydroxylation and ubiquitination were evaluated by Western blot and co-immunoprecipitation. Glycolytic activity was determined by measuring uptake of the glucose analogue 2-NBDG, extracellular lactate levels and expression of GLUT1, PKM2, LDHA and MCT1. M2 polarization markers CD206, Arg-1 and IL-10 were quantified by qRT-PCR, and TGF-β and IL-10 secretion was measured by ELISA. PD-L1 expression was assessed by Western blot, immunofluorescence and chromatin immunoprecipitation. Finally, conditioned media from treated macrophages were applied to A549 cells to evaluate migration through wound-healing assays and invasion using Transwell inserts, and to HUVECs to quantify tube formation. RESULTS: Using DMOG, an HIF-1α activator, we stimulated glycolysis in M2 macrophages, promoting their immunosuppressive polarization and elevating PD-L1 expression, a checkpoint protein associated with immune evasion. CB treatment reversed this effect by increasing HIF-1α hydroxylation and ubiquitination, leading to decreased HIF-1α stability, glucose uptake, and lactate production in M2 macrophages. Additionally, CB pre-treatment of M2 macrophages reduced the secretion of the cytokines TGF-β and IL-10, thereby limiting lung cancer cell migration, invasion, and angiogenesis. CONCLUSION: These findings suggest that CB suppresses M2 macrophage-mediated tumor support by targeting HIF-1α and glycolysis, thereby reprogramming the TME toward an anti-tumor state. This highlights CB's potential of CB in the treatment of lung cancer by countering immunosuppressive macrophage activity.
Cinobufagin Inhibits Invasion and Migration of Non-Small Cell Lung Cancer via Regulating Glucose Metabolism Reprogramming in Tumor-Associated Macrophages.
阅读:2
作者:Sun Ying, Yang Huitong, Mei Xue, Xia Jinchan, Feng Long, Gao Jianfeng, Jiang Wei, Jiang Min, Hao Xu, Feng Yilin, Lian Yunfeng
期刊: | Drug Design Development and Therapy | 影响因子: | 5.100 |
时间: | 2025 | 起止号: | 2025 Aug 2; 19:6647-6664 |
doi: | 10.2147/DDDT.S531190 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。