Algae such as diatoms and haptophytes have distinct photosynthetic pigments from plants, including a novel set of carotenoids. This includes a primary xanthophyll cycle comprised of diadinoxanthin and its de-epoxidation product diatoxanthin that enables the switch between light harvesting and non-photochemical quenching (NPQ)-mediated dissipation of light energy. The enzyme responsible for the reversal of this cycle was previously unknown. Here, we identified zeaxanthin epoxidase 3 (ZEP3) from Phaeodactylum tricornutum as the candidate diatoxanthin epoxidase. Knocking out the ZEP3 gene caused a loss of rapidly reversible NPQ following saturating light exposure. This correlated with the maintenance of high concentrations of diatoxanthin during recovery in low light. Xanthophyll cycling and NPQ relaxation were restored via complementation of the wild-type ZEP3 gene. The zep3 knockout strains showed reduced photosynthetic rates at higher light fluxes and reduced specific growth rate in variable light regimes, likely due to the mutant strains becoming locked in a light energy dissipation state. We were able to toggle the level of NPQ capacity in a time and dose dependent manner by placing the ZEP3 gene under the control of a β-estradiol inducible promoter. Identification of this gene provides a deeper understanding of the diversification of photosynthetic control in algae compared to plants and suggests a potential target to improve the productivity of industrial-scale cultures.
Identifying the gene responsible for non-photochemical quenching reversal in Phaeodactylum tricornutum.
鉴定三角褐指藻中负责非光化学猝灭逆转的基因
阅读:7
作者:Ware Maxwell A, Paton Andrew J, Bai Yu, Kassaw Tessema, Lohr Martin, Peers Graham
| 期刊: | Plant Journal | 影响因子: | 5.700 |
| 时间: | 2024 | 起止号: | 2024 Dec;120(5):2113-2126 |
| doi: | 10.1111/tpj.17104 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
