Acidithiobacillus ferrooxidans (Af.) is a microorganism of significant biotechnological interest that thrives in acidic environments with very high concentrations of soluble iron. Understanding the molecular mechanisms that enable its survival in these extreme conditions is of great scientific relevance and practical importance for bioleaching of precious metals. Central to its metabolism is the Ferric Uptake Regulator (Fur), a protein that regulates iron homeostasis and responses to oxidative stress in bacteria. Using a combination of bioinformatics, experimental, and spectroscopic methodologies, this study identified and characterized the metal binding sites and cofactors relevant to AfFur´s function. Three metal-binding sites became evident, two of which are very similar to those found in other members of the superfamily. The third site, formed by four cysteine residues in a configuration CX(2)C-X(n)-CX(8)C, stably binds an iron-sulfur cluster. Site-directed mutagenesis coupled with Electrophoretic Mobility Shift Assays underscored the essentiality of these cysteines for AfFur's functionality, particularly in DNA binding. Altogether, the findings from this research suggest the presence of an iron-sulfur cluster, which may play a role in fine-tuning iron sensing, particularly adapted to the unique environment of Acidithiobacillus ferrooxidans.
Novel metal sites revealed by spectroscopic and structural characterization of the ferric uptake regulator from Acidithiobacillus ferrooxidans.
通过对氧化亚铁硫杆菌铁吸收调节剂的光谱和结构表征,揭示了新的金属位点
阅读:7
作者:Argandoña Yerko, Olivos Andrea, Obando Patricia, Imas Francisco, Pohl Ehmke, Quatrini Raquel, Arenas-Salinas Mauricio
| 期刊: | Computational and Structural Biotechnology Journal | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 Feb 19; 27:765-777 |
| doi: | 10.1016/j.csbj.2025.02.017 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
